$Homework\ 6$

- 1. RSA Assumption (5+12+5). Consider RSA encryption scheme with parameters $N=35=5\times7.$
 - (a) Find $\varphi(N)$ and \mathbb{Z}_N^* .

(b) Use repeated squaring and complete the rows X, X^2, X^4 for all $X \in \mathbb{Z}_N^*$ as you have seen in the class (slides), that is, fill in the following table by adding as many columns as needed.

Solution.

X						
X^2						
X^4						
X						
X^2						
X^4						

(c) Find the row X^5 and show that X^5 is a bijection from \mathbb{Z}_N^* to \mathbb{Z}_N^* . Solution.

X						
X^4						
X^5						

X						
X^4						
X^5						

2. Answer to the following questions (7+7+7+7):

(a) Compute the three least significant (decimal) digits of $87341011^{324562002}$ by hand. **Solution.**

(b) Is the following RSA signature scheme valid?(Justify your answer) $(r||m) = 342454323, \sigma = 13245345356, N = 155, e = 664$ Here, m denotes the message, and r denotes the randomness used to sign m and σ denotes the signature. Moreover, (r||m) denotes the concatenation of r and m. The signature algorithm Sign(m) returns $(r||m)^d \mod N$ where d is the inverse of e modulo $\varphi(N)$. The verification algorithm $Ver(m,\sigma)$ returns $((r||m) == \sigma^e \mod N)$. Solution.

(c) Remember that in RSA encryption and signature schemes, $N=p\times q$ where p and q are two large primes. Show that in a RSA scheme (with public parameters N and e), if you know N and $\varphi(N)$, then you can find the factorization of N i.e. you can find p and q. Solution.

(d) Consider an encryption scheme where $Enc(m) := m^e \mod N$ where e is a positive integer relatively prime to $\varphi(N)$ and $Dec(c) := c^d \mod N$ where d is the inverse of e modulo $\varphi(N)$. Show that in this encryption scheme, if you know the encryption of m_1 and the encryption of m_2 , then you can find the encryption of $(m_1 \times m_2)^5$.

Solution.

Collaborators: