Homework 6

1. RSA Assumption $(\mathbf{5}+\mathbf{1 2 + 5})$. Consider RSA encryption scheme with parameters $N=35=5 \times 7$.
(a) Find $\varphi(N)$ and \mathbb{Z}_{N}^{*}.
(b) Use repeated squaring and complete the rows X, X^{2}, X^{4} for all $X \in \mathbb{Z}_{N}^{*}$ as you have seen in the class (slides), that is, fill in the following table by adding as many columns as needed.
Solution.

X												
X^{2}												
X^{4}												

X												
X^{2}												
X^{4}												

(c) Find the row X^{5} and show that X^{5} is a bijection from \mathbb{Z}_{N}^{*} to \mathbb{Z}_{N}^{*}. Solution.

X										
X^{4}										

X										
X^{4}										

2. Answer to the following questions $(7+7+7+7)$:
(a) Compute the three least significant (decimal) digits of $87341011^{324562002}$ by hand. Solution.
(b) Is the following RSA signature scheme valid?(Justify your answer)
$(r \| m)=342454323, \sigma=13245345356, N=155, e=664$
Here, m denotes the message, and r denotes the randomness used to sign m and σ denotes the signature. Moreover, $(r \| m)$ denotes the concatenation of r and m. The signature algorithm $\operatorname{Sign}(m)$ returns $(r \| m)^{d} \bmod N$ where d is the inverse of e modulo $\varphi(N)$. The verification algorithm $\operatorname{Ver}(m, \sigma)$ returns $\left((r \| m)==\sigma^{e}\right.$ $\bmod N)$.
Solution.
(c) Remember that in RSA encryption and signature schemes, $N=p \times q$ where p and q are two large primes. Show that in a RSA scheme (with public parameters N and e), if you know N and $\varphi(N)$, then you can find the factorization of N i.e. you can find p and q.

Solution.

(d) Consider an encryption scheme where $\operatorname{Enc}(m):=m^{e} \bmod N$ where e is a positive integer relatively prime to $\varphi(N)$ and $\operatorname{Dec}(c):=c^{d} \bmod N$ where d is the inverse of e modulo $\varphi(N)$. Show that in this encryption scheme, if you know the encryption of m_{1} and the encryption of m_{2}, then you can find the encryption of $\left(m_{1} \times m_{2}\right)^{5}$.
Solution.

Collaborators :

